INVISIBLE COMMUNICATION FOR SECURITY AND AUTHENTICATION

Dr. Jyotsna Kumar Mandal

Professor of Department of Computer Science \& Engineering, Former Dean, ETM, Director, IQAC, University of Kalyani

Kalyani, Nadia, West Bengal
E-mail:jkmandal@klyuniv.ac.in, jkm.cse@gmail.com
Mobile:919434352214

ObJECTIVE

*. Problem in Communication

* Steganography
* Work Related Objective

COMMUNICATION

SECURITY ASPECTS

CRYPTOGRAPHY

STEGANOGRAPHY

CRYPTOGRAPHY

Plain Text

jkm.cse@gmail.com

APPLICATION

APPLICATION (conv...)

 this leaf?

May be Yes

APPLICATION (cont..)

Now Can you?

No

Technology says YES through embedded information in the image.

Communication Through Network

Plain text to Cipher text

- Substitution Techniques
- Caesar Cipher
- Mono-alphabetic Cipher
- Homophonic Substitution Cipher
- Playfair Cipher...............
- Transposition Techniques

Encryption
 Decryption
 Technique...

- Rail Fence Technique
- Vernam Cipher(One Time Pad)
- Book Cipher/ Running key cipher

Communication.......

Encrypt
Flow of data packets
Cipher text message

Decrypt

Receiver

Sender need to send the algorithm agreement.

Note:- The decryption algorithm must be the same as the encryption algorithm. Otherwise decryption would not be able to retrieve the original message.

Applications Of Symmetric ALGORITHMS

APPLICATIONS OF Asymmetric Algorithms

Encryption

Authentication

DIGITAL SIGNATURES

-A signature is a technique for non-repudiation based on the public key cryptography.
-The creator of a message can attach a code, the signature, which guarantees the source and integrity of the message.

Message Digests :One-Way Hash Functions

- A single bit change in a document should cause about 50% of the bits in the digest to change their values !

Popular Hash Functions

- MD5 - Message Digest \# 5, Ron Rivest, RSA
- SHA-1 - Secure Hash Algorithm, NIST / NSA

Forging Documents

- On average 2^{m} trials are required to find a document having the same hash value as a given one!

Birthday Attacks against Hash Functions LOOKING FOR COLLISIONS !

- Less than $2^{m / 2}$ trials are required to find two documents having the same hash value \Rightarrow MD5 with 2^{39} and SHA-1 with 2^{63} trials are both insecure !

USER AUTHENTICATION

- Username / Password Dictionary Attacks
- One-Time Passwords

Token: SecureID, etc.

- Public Key Algorithms

Smartcards, Certificates, Public Key Infrastructure

- Biometrical Methods

Fingerprint, Iris-Scan, Voice, Face, Hand, etc.
"On the Internet, nobody knows you're a dog."

INSECURE AUTHENTICATION BASED ON PASSWORDS

Fig. 3.2 GSM network architecture

EAVESDROP / SPY

The Main intention of Eavesdrop is to change the information in mid of the way, but the receiver cant able to understand that.

For this

The Concept of Digital Certificates can be used.

Digital Certificates

INFRASTRUCTURE

The Public Key Infrastructure (PKI) is the road ahead for almost all cryptography system.

The PKI is a set of hardware, software, people, policies, and procedures needed to create, manage, store, distribute, and revoke digital certificates .

INFRASTRUCTURE

PROBLEM DOMAIN

Data Security

Steganography

Image and Legal
Document
Authentication

In Spatial
Domain
In Frequency
Domain

Image
Authentication by

Image

Authentication
by Message

STEGANOGRAPHY

Steganography is the art and science of writing hidden messages in such a way that no one, apart from the sender and intended recipient, suspects the existence of the message, a form of security through obscurity (darkness).
\checkmark Data Hiding
\checkmark Secret message transmission
\checkmark Ownership verification
\checkmark Copyright Protection

SECRET COMMUNICATION

Brief history of how the art and science has evolved.

The word steganography came from a 15th century work called Steganographia by a German abbot named Trithemius. On the face of it, the three books were about magic, but they were also contained an encrypted treatise on cryptography so Steganographia was itself a case of steganography.

SECOND EXAMPLE

 An ancient Greek named Histaiaeus was fomenting revolt against the king of Persia and needed to pass along a message secretly. He shaved the head of a slave, tattooed the message on his scalp, then sent him on his way when his hair grew back in. Recipients of the message shaved his head again to read the alert. The Greeks used the same trick shaving and writing on the belly of arabbit.

Sometime in the 5th century B.C., an exiled Greek named Demaratus wrote a warning that the Persians planned to attack Sparta. He wrote the message on the wooden backing for a wax tablet, then hid it by filling in the wood frame with wax so it looked like a tablet containing no writing at all. The wife of the Spartan king divined that there was a message behind the wax, so they scraped it off and got the warning in time to set up a desperate defence at Thermopylae, incidentally giving modern screenwriters the plot for the movie The 300 .

FOURTH EXAMPLE

Encoded messages have been knitted into sweaters and other garments. In this example, the blue dotted lines are Morse Code for, "My girlfriennd knit this." Yes, the sweater has a typo - an extra n in girlfriend according to the woman who knitted it.

FIFTH EXAMPLE

During World War II, microdots - miniaturized photos that can be hidden in plain sight, then read using magnifiers - were used by spies to carry data out of enemy countries. Here the microdot circled in red piggybacks on a watch face. Blown up, it reveals a message written in German.

SIXTH EXAMPLE

When the USA Pueblo was captured by North Korea in 1968, the crew was forced to pose for propaganda photos to demonstrate they were being well treated. Their finger gestures are a form of steganography that sends a message Americans could decrypt right away, the North Koreans, not so quickly.

Digital photo steganography original image, it generally uses code fields for unimportant bits as places to goes unnoticed by the naked eye. In these pictures, the hide encoded messages or image of the cat has been images. While such embedded in the image of the manipulation might slightly branches against the sky. alter the quality of the

WNERSHIP Protection \& Verification

Sender Side

65	78	73	30
58	78	38	32
56	73	56	35
59	70	52	39

01000001	01001110	01001001	00011110
00111010	01001110	00100110	00100000
00111000	01001001	00111000	00100011
00111011	01000110	00110100	00100111

Original Image (Image Matrix)

$(01100000011$	01001100	01000101	00010111
00111011	01001010	00101019	00100001
00111001	01001101	00111100	00100011
00111011	01000000	00111100	00100111

01000001	01001100	01000101	00010111
00111011	01001010	00101010	00100001
00111001	01001101	00111100	00100011
00111011	01000000	00111100	00100111

65	76	69	23
59	74	42	33
57	77	60	35
59	64	60	39

Image with Secret Data

65	78	63	30
58	78	38	32
56	73	56	35
59	70	52	39

Original Image

STEGANOGRAPHY

*TRADITIONAL

 STEGANOGRAPHY.*MODERN STEGANOGRAPHY.

STEGANOGRAPHIC PROTOCOLS

* Pure Steganography
* Secret Key Steganography
* Public Key Steganography

APPLLCATIONS STEGANOGRAPHY

7. Usage in modern printers

Steganography is used by some modern printers, including HP and Xerox brand color laser printers. Tiny yellow dots are added to each page. The dots are barely visible and contain encoded printer serial numbers, as well as date and time stamps.
2. Usage in Legal document

Steganography can be used for digital watermarking, where a message (being simply an identifier) is hidden in an image so that its source can be tracked or verified, copyright protection, Bank draft, cheque and many other.
3. Steganography in audio can be used with mobile phone.

RUMORED USAGE IN TERRORISM

Rumors about terrorists using steganography started first in the daily newspaper USA Today on February 5, 2001 in two articles titled "Terrorist instructions hidden online" and "Terror groups hide behind Web encryption". In July of the same year, the information looked even more precise: "Militants wire Web with links to jihad".

Document Authentication

Document Authentication

24AA 106474

We are Indian. We are proud for our country. We always like to look ahead with positive attitude and giving maximum effort to growth our country. We are so much strong in science and Technology.

We are Indian. We are proud for our country. We always like to look ahead with pegattimee attuittunde and giving maiximmumm effort to growth our country. We are so mucch strieadg im science and Technology.

Nabin Ghoshal

DOCUMENT AUTHENTIC ATION

Extract MD5

Compare
 Generate MD5

We are Indian. We are proud for our country. We always like to look ahead with negative attitude and giving minimum effort to growth our country. We are so much weak in science and Technology.

Lmage Authentication

Lena Image

Lena
Image

SENDER SIDE OPER\&TION

Image Authentication

Embedded Lena Image

Extracted Image

 RECEIVER SIDE OPERATIONCOMPARE

Authentication and Secret Message Transmission Technique Using Discrete Fourier Transformation.

(a). Hill.
(c). ASMTDFT.
(d). S-tools.

(b). Lotus.

Figure 3. Comparison of visual fidelity in embedding 'Lotus' using ASMTDFT and S-Tools.

(a). Rashmancha.

(b). Lotus.

(c). ASMTDFT.

(d). S-tools.

Figure 4. Comparison of visual fidelity in embedding 'Lotus' using ASMTDFT and S-Tools.

AUTLENqURTON AND SECRHVESSGE Transmission Technique Using Discrete Fourier Transformation.

(a). Lotus.

(b). Extracted Lotus.

Histogran for authenticating image 'Lotus', extracted image 'Lotus' using ASMTDFT.

Objectives of Image Steganography

Data Hiding

Secured message Transmission

Invisible data transmission

Ownership verification

Embedding/ Authentication

Key

Source Image \rightarrow Data Hiding Message/Image Algorithm

Stego. Image

Extraction Algorithm

Source Image at Destinat Authenticating Image at Destination

IMAGE STEGANOGRAPHY

Authenticated Image Le

INIEM SMEGANOGRAPH?

> Source Image Peppers

Authenticating Image

Embedded Image Peppers

TECHNICAL ASPECTS

SPATIAL DOMAIN LSB

STEGONAGRAPHY

LSB (Least Significant Bit)

149	13	201
150	15	202
159	16	203

100101010000110111001001
100101100000111111001010 100111110001000011001011

HIDE --- 365

$$
101101101
$$

$$
101101101
$$

100101010000110111001001 100101100000111 (1) 11001010 100111110001000011001011

Changed data

100101010000110011001001 $100101110000011101100101(1)$ 100111110001000011001011

Thus, we have successfully hidden 9 bits in 9 bytes but at a cost of only changing 4 bit, or roughly 50%, of the LSBs.

FREQUENCY DOMAIN STEGONAGRAPHY

. DISCRETE FOURIER TRANSFORMED

- DISCRETE COSINE TRANSFORMED
- DISCRETE WAVELET TRANSFORMED
- Z-TRANSFORMED

MIXED DOMAIN STEGONAGRAPHY

. SPATIAL DOMAIN
 - FREQUENCY DOMAIN

BOTH DOMAINS ARE USED IN THIS STEGONAGRAPIC PROCESS

SPECIFICATIONS

- Embedding is done in frequency components
- Source image 512×512
- Authenticating image 128×128
- Embedding done on Real components

SMEGANOGMAPMY

FREQUENCY DOMAIN STEGONAGRAPHY

- DISCRETE FOURIER TRANSFORMED
- DISCRETE COSINE TRANSFORMED
- DISCRETE WAVELET TRANSFORMED
- Z-TRANSFORMED

DFT and IDFT

$$
F(u, v)=\frac{1}{\sqrt{M N}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) e^{-j 2 \pi\left(\frac{u x}{M}+\frac{v y}{N}\right)}
$$

where $u=0$ to $\mathrm{M}-1$ and $\mathrm{v}=0$ to $\mathrm{N}-1$.

$$
f(x, y)=\frac{1}{\sqrt{M N}} \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F(u, v) e^{j 2 \pi\left(\frac{u x}{M}+\frac{v y}{N}\right)}
$$

where $\mathrm{x}=0$ to $\mathrm{M}-1$ and $\mathrm{y}=0$ to $\mathrm{N}-1$.
$\mathrm{F}(\mathrm{u}, \mathrm{v})=1 / 2 \sum \sum \mathrm{f}(\mathrm{x}, \mathrm{y})[\cos 2 \Pi(\mathrm{ux} / 2+\mathrm{vy}$ /2) $-\mathrm{i} \sin 2 \Pi(u x / 2+v y / 2)]=\sum \sum f(x$, y) $[\cos \Pi(u x+v y)-i \sin \Pi(u x+v y)]$
where x, y are spatial variables and u, v are frequency variables

Formulation and Motivation of DFTMCIAWC
2×2 mask values are $\{a, b, c, d\}$ from the source image. The DFT values are $\mathrm{F}(\mathrm{a})=1 / 2(\mathrm{a}+\mathrm{b}+\mathrm{c}+\mathrm{d})=\mathrm{W}$ (say), $F(b)=1 / 2(a-b+c-d)=X$ (say), $F(c)$ $=1 / 2(a+b-c-d)=Y($ say $)$, and $F(d)$ $=1 / 2(a-b-c+d)=Z$ (say) for four a, b, c, and d spatial values and $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z are frequency values respectively.

Formulation and Motivation of DFTMCIAWC

Spatial Domain to Frequency Domain (DFT)
$F(a)=1 / 2(a+b+c+d)=W$
$F(b)=1 / 2(a-b+c-d)=X$
$F(c)=1 / 2(a+b-c-d)=Y$
$\mathrm{F}(\mathrm{d})=1 / 2(\mathrm{a}-\mathrm{b}-\mathrm{c}+\mathrm{d})=\mathrm{Z}$

DFT to Spatial Domain (IDFT)
$\mathrm{F}^{-1}(\mathrm{~W})=1 / 2(\mathrm{~W}+\mathrm{X}+\mathrm{Y}+\mathrm{Z})$
$\mathrm{F}^{-1}(\mathrm{X})=1 / 2(\mathrm{~W}-\mathrm{X}+\mathrm{Y}-\mathrm{Z})$
$\mathrm{F}^{-1}(\mathrm{Y})=1 / 2(\mathrm{~W}+\mathrm{X}-\mathrm{Y}-\mathrm{Z})$
$\mathrm{F}^{-1}(\mathrm{Z})=1 / 2(\mathrm{~W}-\mathrm{X}-\mathrm{Y}+\mathrm{Z})$

Problems and solutions of
DFTMCIAWC
A. The converted value may by negative(ve).
B. The converted value in spatial domain may be a fractional number.
C. The converted value may be greater the maximum value (i.e. 255).

Solutions: Re-adjustment is done on $1^{\text {st }}$ frequency component where embedding is not done.

Flow Diagram of FD
 Techniques

Authenticating message/image
Message Digest MD
Transformed Techniques
Embedded Image for Transmission

Received Embedded Image
Extraction using Transformed Technique

Size of authenticatin message/image

Generated MD'

Unauthorized

Visual Interpretation

Authenticated Image Le

AResults \& visurnkinterpretation using DPMNICIAWC

> Source Image Peppers

Authenticating Image

Embedded Image using DFTMCI wC

CORRECTNESS OF ADJUSTMENT

The logic behind adding/subtracting 8 with two adjacent pixels:
If the range is shifted from lower to higher the embedded message become undetectable. To adjust pixels 8 is added or subtracted to bring the interval in the lower range. Again if you add or subtract 8 from $\mathrm{P}_{\mathrm{i}}{ }^{\prime}$ or $\mathrm{P}_{\mathrm{i}+1}$ ' then 3 -lsb bits in both cases will be unaltered as there will be change on $3^{\text {rd }}$ bit position(from $\operatorname{LSB}\left(0^{\text {th }}\right.$ bit)) towards MSB.
$\mathrm{P}_{\mathrm{i}}^{\prime}$ after adjustment $=23=00010111$

Unchanged Embedded bits

- After embedding and before readjustment the pixel P_{i}, was $\quad 31_{10}=00011111$

Adjustment $-8_{10}=00001000$
$\mathrm{P}_{\mathrm{i}^{\prime}}^{\prime}$ on readjustment $=00010111$

Embedded information

This bit is changed in handling
After embedding and before readjustment the pixel $\mathrm{P}_{\mathrm{i}+1}$, was $8_{\mathrm{f} 0}=$ 00001000

Adjustment $+8_{10}=00001000$ readjustment, no effect on information

Calculate new range di $=23-16=$

 7The interval/range fabricated to lower range after adjustment So there is no decoding error

$$
\mathrm{Pi}+1^{\prime}=16
$$

$$
\begin{aligned}
& \mathrm{Pi}=30 \\
& \mathrm{Pi}+1=15
\end{aligned}
$$

Some Open Directioms

> Extension to more bits insertion within each Byte of pixel information in Color image.

- Extension to chose any dimension of Mask.
$>$ Extension to change the direction of accessing of Image Mask (to column major order).

ADJUSTMENT

10	25
30	20

ORIGINAL MATRIX REGENERATED THROUGH REVERSE TRANSFORM

TRANSFORM MATRIX

85	$-20-5 \mathrm{~J}$
$\mathbf{- 5}$	$-\mathbf{2 0 + 5 J}$

Let 85 is the median value of the block Convert it to binary:
1010101

Embedding

Source Stream
$85=1010101$
Secrete Information ' S ' is 1010011
Embed a bit into Fourth LSB Embedded Stream:1011101

New Generation(GABased

Tuning)

Source Tuning) ${ }^{\text {Stim: }} 1010101=85$	85	-20-
One hit from Secrete Information 's' (1010011) is 1 has bee		5 J
embedded	-5	-
Embedded Stream:101101		20+5
Pixel Value after embedding is:93		J
fference		

As next bit of embedded position is 1, flip all bits right to embedded bit to zero
Handled Embedded pixel:1011000=88 Original Pixel:85 Differenec: $88-85=3$ which is minimum

10	25
30	20

TRANSFORMED COEFFICIENTS

85	$-20-5 \mathrm{~J}$
-5	$-20+5 \mathrm{~J}$

EMBEDDED COEFFICIENTS

93	$-20-5 \mathrm{~J}$
$-\mathbf{5}$	$-\mathbf{2 0 + 5 J}$

GA BASED ADJUSTMENT

88	$--20-5 \mathrm{~J}$
$\mathbf{- 5}$	$\mathbf{- 2 0 + 5 J}$

GA BASED ADJUSTMENT

88	$-20-5 \mathrm{~J}$
-5	$-20+5 \mathrm{~J}$

EMBEDDED EINVERSE TRANSFORMED

10	26
30	20

EMBEDDED EINVERSE TRANSFORMED

10	26
30	20

GA BASED CROSSOVER

12	25
24	18

CHAOTIC MAPS FOR AUTHENTICATION

Recurrence Relation

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{n}+1}=\mu_{2} \mathrm{X}_{\mathrm{n}} \text { for } \mathrm{X}_{\mathrm{n}}<1 / 2 \\
& \mu_{2} \mathrm{X}_{\mathrm{n}} \text { for } 1 / 2<=\mathrm{X}_{\mathrm{n}}
\end{aligned}
$$

$$
\begin{aligned}
& Y_{n+1}=\mu_{2} Y_{n} \text { for } Y_{n}<1 / 2 \\
& \mu_{2} Y_{n} \text { for } 1 / 2<=Y_{n}
\end{aligned}
$$

Random Bit Generator

$$
\begin{array}{r}
\mathrm{G}\left(\mathrm{X}_{\mathrm{n}+1}, \mathrm{Y}_{\mathrm{n}+1}\right)=0 \text { if } \mathrm{X}_{\mathrm{n}+1>=} \mathrm{Y}_{\mathrm{n}+1} \\
1 \text { if } \mathrm{X}_{\mathrm{n}+1>}=\mathrm{Y}_{\mathrm{n}+1}
\end{array}
$$

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{n}+1}= \mathrm{P}=\mathrm{X}_{\mathrm{i}} / \alpha \text { for } \mathrm{X}_{\mathrm{i}}=[0, \alpha] \\
& \mathrm{P}^{\prime}=1-\mathrm{X}_{\mathrm{i}} /(1-\alpha) \text { for } \mathrm{X}_{\mathrm{i}}=[\alpha, 1]
\end{aligned}
$$

Binary Bit Generator

$$
G_{i+1}=0 \text { if } P<P^{\prime} \text { Else } 1
$$

CROSS COUPLED MAP FOR AUTHENTICATION

$$
\begin{aligned}
& X_{n+1}=X_{i} / \alpha \text { for } X_{i}=[0, \alpha] \\
& \mathbf{Y}_{n+1}=1-Y_{i} /(1-\alpha) \text { for } X_{i}=[\alpha, 1]
\end{aligned}
$$

Random Bit Generator

$$
\begin{aligned}
& G\left(X_{n+1}, Y_{n+1}\right)=0 \text { if } X_{n+1>}>Y_{n+1} \\
& 1 \text { if } X_{n+1>} \\
& Y_{n+1}
\end{aligned}
$$

GENERATION OF CHAOTIC MAP

- Equation of chaotic map:

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{k}+1}=\mu \mathrm{X}_{\mathrm{k}}\left(1-\mathrm{X}_{\mathrm{k}}\right) \\
& \text { Here, } 0<=\mu<=4 \text { and } 0<\mathrm{X}_{\mathrm{k}}<1
\end{aligned}
$$

- the map is in chaotic region when
$3.5699456<\mu<=4$
- $\mu=$ control parameter, the sequence is non periodic and non convergent.

STEGANOGRAPHIC USE

- here, $\mu=3.60, \mathrm{X}_{\mathrm{k}}=0.65$
- the sequence generated for N numbers
> $\left\{\mathrm{X}_{\mathrm{k}}\right\}=\{0.819000,0.533660,0.895921,0.335687$, $0.802805,0.569913,0.882404,0.373563, \ldots\}$
- calculate the arithmetic mean ,Threshold(T),of N real numbers
$\begin{aligned}> & =\mathrm{N}_{\sum_{\mathrm{k}=0}}\left(\mathrm{x}_{\mathrm{k}} / \mathrm{N}\right) \\ & =0.646400 \text { (for the above example) }\end{aligned}$
- if $x_{k}>=T$ then $B_{k}=1$ else $B_{k}=0$, where B_{k} is the encoded binary sequence generated
$\mathrm{N}=8, \mu=3.6, \mathrm{x}_{\mathrm{k}}=0.65, \mathrm{x}_{\mathrm{k}+1}=\mu \mathrm{X}_{\mathrm{k}}\left(1-\mathrm{x}_{\mathrm{k}}\right), \mathrm{T}=0.65162$
- Chaotic sequence is as follows:

0.81900	0.53366						
0	0	0.89592	0.33568 7	0.80280 5	0.56991 3	0.88240 4	0.37356 3
1	0	1	0	1	0	1	0

- Take 8 pixels of secret image. Let $\mathrm{C}_{\mathrm{k}}=01010000$,be 1 secret byte of secret image.
- First bit of binary sequence generated from chaos function $\mathbf{B}_{\mathrm{k}=1}$
- Convert to 8bit by adding 7 ones to left of \mathbf{B}_{k}
$>\mathrm{B}_{\mathrm{k}}=1111111[1]$
- Perform XOR bet chaos)
$\mathrm{C}_{\mathrm{k}}=01010000$

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{k}}=11111111 \\
& \mathrm{C}_{\mathrm{k}}=10101111
\end{aligned}
$$

'et image is embedded with 1bit

STEGANOGRAPHY

$\mu=3.6, X_{k}=0.65$ Thus the sequence generate is
$\mathrm{X}_{\mathrm{k}=1,2,3}=$
$\{0.819000,0.533660,0.895921,0.335687,0$. $802805,0.569913,0.882404,0.373563\}$
Arithmetic mean $=0.646400$
Threshold $\mathrm{T}=0.646400$
Encoding in binary is 10101010

SELECTION OF InsERTION POSITION

Algorithm - Hash Map

1. A set of functions is used in the mutation process that needs to be generated a priori.
2. These functions generate XOR values as a function of the pixel coordinates.
3. This set of functions is the first key of the encryption process.
4. Each of these functions is uniquely identified by an integer, represented by the variable id.

Chromosome REPRESENTATION

1. Each chromosome represents a possible solution, i.e., an encrypted image.
2. For a true color (24-bit) input image having height H and width W pixels the corresponding chromosome is a three dimensional matrix $\mathrm{W} \times \mathrm{H} \times 3$ with 8 -bit entries in
each of the three layers of red, green and blue, i.e., each layer consists of $\mathrm{W} \times \mathrm{H}$ pixels.

A SEGMENT OF FREQUENCY DISTRIBUTION FOR

 CHARACTERS IN TLIB.EXE AND ITS ENCRYPTED FILE

Characters

Blue lines indicate the occurrences of characters in the source file and red lines indicate the same in the corresponding encrypted file

Comparative results between RPMS technique and RSA technique for .cpp files for their Chi Square values and corresponding degree of freedom

Source file	Encrypted files using RPMS technique	Encrypted files using RSA technique	Chi Square value for RPMS technique	Chi Square value for RSA technique	Degrees of freedom
bricks.cpp	a1.cpp	cpp1.cpp	113381	200221	88
project.cpp	a2.cpp	cpp2.cpp	438133	197728	90
arith.cpp	a3.cpp	cpp 3.cpp	143723	273982	77
start.cpp	a4.cpp	cpp4.cpp	297753	49242	88
chartcom.cpp	a5.cpp	cpp5.cpp	48929	105384	84
bitio.cpp	a6.cpp	срp6.cpp	9101	52529	70
mainc.cpp	a7.cpp	cpp7.cpp	22485	4964	83
ttest.cpp	a8.cpp	срp8.cpp	1794	3652	69
do.cpp	a9.cpp	cpp9.cpp	294607	655734	88
cal.cpp	a10.cpp	cpp10.cpp	143672	216498	77

FILES WITH BETTER RESULT IN PROPOSED TECHNIQUE THAN EXISTING RSA TECHNIQUE IN TERMS OF CHI SQUARE VALUES

QUESTIONS

 EComments
jkm.cse@gmail.com

