# Towards Design and Implementation of Discrete Transform Image Coding based on G-Lets and Z- transform

Intermediate report for the year 2013

Madhumita Sengupta, J. K. Mandal Computer Science & Engineering, Faculty of Engineering, Technology & Management University of Kalyani, West Bengal, India e-mail: <u>madhumita.sngpt@gmail.com</u>, jkm.cse@gmail.com

*Abstract:* This article is an intermediate report submitted in partial fulfilment for the requirements of the PhD Degree in Computer Science and Engineering at the University of Kalyani for the year 2013. This article explains steganography from preliminary stage to frequency domain steganography. Two transformation techniques are used Z-Transform and G-Lets. Both this transformation techniques are explained with detail formulation, pictorial representation and practical results.

#### 1. INTRODUCTION

Steganography is a way of writing secret messages in such a manner that no one apart from sender and intended receiver can able to identify the existence of information in secret form. Due to swift expansion in Internet, dependency on steganographic technique increases, to authenticate legal document/content and copyright protection for all digital documents. Generally secret information may be hidden in one of two ways, such as cryptography and steganography. In cryptography the information is converted into unintelligent data, where as steganography hides the presence of secret data. Cryptography encourages the intruder to break the key to decode the secret, whereas steganography don't allow intruder to suspect the secret information.

The steganographic domain is divided into four areas, such as, "data hiding", "authentication of documents and tampering detection", "secret message transmission" and "ownership protection & verification". Every domain has its own specification in respect of, quantity of data to be hidden and the degree of immunity with respect to modification of host image. These two measurements force us to increases the data to be hidden with respect to degree of immunity for host image decreases. As an example for ownership verification small amount of secret data needs to be embedded, but for secret message transmission huge amount of data needs to be hidden inside the host image.

To achieve the solution of above four problems, challenges come across the way are follows:-

- a. The cover image degrades due to hidden data.
- b. Hiding data into the content of the file not into the header of the file, so that hidden data must remain intact with varying header format.
- c. Hiding data in spatial domain so that computation cost decreases.
- d. Hiding data in frequency domain for increasing the security of hidden data inside the host image.
- e. Hiding data in a manner that, any usual external forces can't temper the hidden data, such as data compression, image cropping, image rotation, Noise, ect.

The main motive of this research work is to study different transform and hiding techniques by which our four requirements can be achieved by overcoming all the challenges comes across the way, to hide the presence of the data without the observer notices, even if they are perceptible or not.

The transformation techniques studied in this phases of research are discrete wavelet transform, discrete cosine transform, and Hough transform and Daubenchies wavelet transform. Now two new transformation technique are used in steganography to get the better results. The section 2 emphasises

the techniques of document authentication over Z transform domain, and section 3 defines regarding G-Let transformation technique.

#### 2. STEGANOGRAPHY THROUGH Z TRANSFORMATION TECHNIQUE

Z-transform in signal processing converts a discrete time domain signal which is a sequence of real or complex numbers into a complex frequency domain representation. Z-transform can be defined in two ways, unilaterally and bilaterally.

In bilateral Z-transform of discrete time signal x[n] is the formal power series X(z) defined by eq (1).

$$X(\mathbf{z}) = Z\{\mathbf{x}[n]\} = \sum_{n=-\infty}^{\infty} \mathbf{x}[n]\mathbf{z}^{-n}$$
<sup>(1)</sup>

Where n is an integer and z is, in general, a complex number.

Alternatively, in cases where x[n] is defined only for  $n \ge 0$ , the single dimensional or unilateral Z-transform is defined by eq(2).

$$X(\mathbf{z}) = Z\{\mathbf{x}[\mathbf{n}]\} = \sum_{n=0}^{\infty} \mathbf{x}[n]\mathbf{z}^{-n}$$
  
$$\mathbf{z} = re^{j\omega} = r(\cos\omega + j\sin\omega)$$
 (2)

Where r is the magnitude of z, j is the imaginary unit, and  $\omega$  is the angle in radians. We get eq(3) by substituting the value of z in eq(2).

$$X(\mathbf{z}) = Z\{\mathbf{x}[n]\} = \sum_{n=0}^{\infty} \mathbf{x}[n]r^{-n}e^{-j\omega n}$$
(3)  
or 
$$X(\mathbf{z}) = Z\{\mathbf{x}[n]\} = \sum_{n=0}^{\infty} \mathbf{x}[n]r^{-n}(\cos\omega + j\sin\omega)^{-n}$$

On applying eq (3) for forward transformation on 2x2 mask of cover image in a row major order, four frequency component generates such as lower, horizontal, vertical and complex conjugate pair of horizontal frequency as shown in figure 1.a which is similar to subband coding. Every frequency coefficient in lower to higher frequency bands are complex number in the format of 'a + j b'.

| Lower<br>Frequency<br>(LF)          | Horizontal<br>frequency<br>(HF)         | Real part<br>of LF    | Real part<br>of HF             |   | Imaginary<br>part of LF      | Imaginary<br>part of HF                |
|-------------------------------------|-----------------------------------------|-----------------------|--------------------------------|---|------------------------------|----------------------------------------|
| Vertical<br>frequency<br>(VF)       | Complex<br>conjugate<br>pair of<br>(HF) | Real part<br>of VF    | Real part<br>of HF             |   | Imaginary<br>part of VF      | Negation of<br>Imaginary<br>part of HF |
| (a) Z-coefficient of complex values | ent quadrants alue 'a + $j$ b'          | (b) Real<br>frequency | part of all<br>component<br>a' | _ | (c) Imaginar<br>frequency co | ry part of all omponent ' <i>j</i>     |

Fig. 1. Structural representation of coefficients of forward Z-Transform (FZT)

Every transform technique exists with pair of equations, forward and inverse. The inverse Z-transform can be obtained by eq(4).

$$x[n] = Z^{-1}\{X(z)\} = \frac{1}{2\pi j} \oint_C X(z) z^{n-1} dz$$
<sup>(4)</sup>

where C is a counter clockwise closed path encircling the origin and entirely in the region of convergence (ROC). A special case of this contour integral occurs when C is the unit circle. The inverse Z-transform simplifies to eq (5).

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{+\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$
<sup>(5)</sup>

## 2.1 Image coding through Z-Transform with low Energy and Bandwidth (IZEB)

In this work a Z-transform based image coding technique has been proposed. The techniques uses energy efficient and low bandwidth based invisible data embedding with a minimal computational complexity. In this technique near about half the bandwidth is required compared to the traditional Z– transform while transmitting the multimedia content such as images through network.

The original gray scale image as shown in figure 2.a 'Map.pgm' on forward Z transform (FZT) generates four real and four imaginary subband as shown in figure 2.b and 2.d respectively. The information on the bands are emphasis through threshold as shown in figure 2.c and 2.e for real and imaginary parts respectively. Threshold increases the brightness of the small information present in the band. Inverse Z transform applied on real and imaginary parts generate lossless image back with a MSE as zero and that of PSNR is infinity.



Fig. 2. Forward Z transform followed by inverse transform over image

Out of eight, four subbands are enough to regenerate lossless image at destination. This minimizes the energy and the bandwidth near to half. Further energy and the bandwidth can be reduced by reducing the subbands with little loss. Statistical calculation for loss with different numbers of subbands sent to destination to calculate image through IZT shown in table 1. It is clear from the table 1 that single band LF is enough to regenerate the image but LF needs maximum of 10 bit representation for every coefficient. And rest of all the bands need 7 to 8bit representation for coefficient.

|                |                      | Nu        | Number and Name of Band used to reconstruct through IZT |            |                   |                      |                               |  |  |
|----------------|----------------------|-----------|---------------------------------------------------------|------------|-------------------|----------------------|-------------------------------|--|--|
| Cover<br>Image | MSE/<br>PSNR<br>(db) | 1  LF     | 2  LF & HF                                              | 2  LF & VF | 3  LF, HF<br>& VF | 3  LF, HF<br>& imgHF | 4 <br>LF,HF,<br>VF &<br>imgHF |  |  |
| Clock.         | MSE                  | 26.827541 | 29.483864                                               | 41.385128  | 44.007004         | 27.010376            | 0.000                         |  |  |
| pgm            | PSNR                 | 33.844995 | 33.434960                                               | 31.962361  | 31.695586         | 33.815497            | x                             |  |  |

**Table 1.** Statistical Data of Loss with further reduced number of subbands

| Elaine | MSE  | 43.429588 | 58.092613 | 62.663673 | 77.373775 | 47.226242 | 0.000 |
|--------|------|-----------|-----------|-----------|-----------|-----------|-------|
| .pgm   | PSNR | 31.752946 | 30.489594 | 30.160645 | 29.244866 | 31.388970 | 8     |
| Space. | MSE  | 12.659260 | 14.525913 | 20.651455 | 22.501396 | 13.147259 | 0.000 |
| pgm    | PSNR | 37.106720 | 36.509369 | 34.981297 | 34.608709 | 36.942452 | x     |
| Tank.  | MSE  | 39.988754 | 53.691200 | 53.740608 | 67.420712 | 43.637718 | 0.000 |
| pgm    | PSNR | 32.111425 | 30.831772 | 30.827778 | 29.842870 | 31.732183 | x     |
| Truck. | MSE  | 39.040760 | 56.560173 | 48.327442 | 66.218987 | 44.382500 | 0.000 |
| pgm    | PSNR | 32.215621 | 30.605696 | 31.288866 | 29.920978 | 31.658686 | 8     |

## 2.2 Image Authentication through Z-Transform with Low Energy and Bandwidth (IAZT)

In this work a Z-transform based image authentication technique termed as IAZT has been proposed to authenticate gray scale images. The technique uses energy efficient and low bandwidth based invisible data embedding with a minimal computational complexity. Near about half of the bandwidth is required compared to the traditional Z-transform while transmitting the multimedia contents such as images with authenticating message through network. This authenticating technique may be used for copyright protection or ownership verification. Experimental results are computed and compared with the existing authentication techniques like Li's method, SCDFT, Region-Based method and many more based on Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Image Fidelity (IF), Universal Quality Image (UQI) and Structural Similarity Index Measurement (SSIM) which shows better performance in IAZT.

| Cover Image<br>512 x 512 | MSE       | PSNR( <i>dB</i> ) | IF        | UQI       | SSIM      |
|--------------------------|-----------|-------------------|-----------|-----------|-----------|
| Baboon                   | 0.502270  | 51.121433         | 0.999973  | 0.999904  | 0.999905  |
| Boat                     | 3.204308  | 43.073462         | 0.999831  | 0.999292  | 0.999302  |
| Clock                    | 0.459827  | 51.504855         | 0.999988  | 0.999948  | 0.999949  |
| Couple                   | 0.446041  | 51.637055         | 0.999973  | 0.999876  | 0.999878  |
| Elaine                   | 0.447857  | 51.619411         | 0.999978  | 0.999923  | 0.999924  |
| Jet                      | 0.457809  | 51.523956         | 0.999985  | 0.999661  | 0.999680  |
| Map                      | 0.446541  | 51.632192         | 0.999987  | 0.999899  | 0.999901  |
| Space                    | 0.446934  | 51.628372         | 0.999974  | 0.999787  | 0.999795  |
| Tank                     | 0.449867  | 51.599960         | 0.999975  | 0.999784  | 0.999792  |
| Truck                    | 0.451534  | 51.583896         | 0.999963  | 0.999781  | 0.999789  |
| Average                  | 0.7312988 | 50.6924592        | 0.9999627 | 0.9997855 | 0.9997915 |

 Table 2. Statistical analysis on embedding 128 x 128 dimension secret image in vertical subband/

 'Real part of VF' band, Payload 0.5 bpB.

 Table 3. Statistical analysis on embedding 128 x 128 dimension secret image in horizontal subband/

 'Real part of HF' band from four minimum bands, Payload 0.5 bpB.

| Cover Image<br>512 x 512 | MSE      | PSNR( <i>dB</i> ) | IF       | UQI      | SSIM     |
|--------------------------|----------|-------------------|----------|----------|----------|
| Baboon                   | 0.396255 | 52.151051         | 0.999979 | 0.999898 | 0.999899 |
| Boat                     | 0.405952 | 52.046052         | 0.999979 | 0.999910 | 0.999911 |
| Clock                    | 0.479259 | 51.325096         | 0.999987 | 0.999928 | 0.999929 |
| Couple                   | 0.404308 | 52.063677         | 0.999975 | 0.999848 | 0.999851 |
| Elaine                   | 0.404396 | 52.062734         | 0.999981 | 0.999908 | 0.999909 |
| Jet                      | 0.471886 | 51.392436         | 0.999985 | 0.999534 | 0.999561 |
| Map                      | 0.471886 | 51.392436         | 0.999985 | 0.999534 | 0.999561 |
| Space                    | 0.415325 | 51.946921         | 0.999976 | 0.999730 | 0.999740 |

| Cover Image<br>512 x 512 | MSE       | PSNR(dB)   | IF       | UQI       | SSIM     |
|--------------------------|-----------|------------|----------|-----------|----------|
| Tank                     | 0.412228  | 51.979433  | 0.999977 | 0.999730  | 0.999740 |
| Truck                    | 0.413258  | 51.968595  | 0.999966 | 0.999729  | 0.999739 |
| Average                  | 0.4274753 | 51.8328431 | 0.999979 | 0.9997749 | 0.999784 |

**Table 4.** Statistical analysis on embedding 128 x 128 dimension secret image in diagonal subband/ 'Imaginary part of HF' band from four minimum bands, Payload 0.5 bpB.

| Cover Image<br>512 x 512 | MSE       | PSNR(dB)   | IF        | UQI       | SSIM      |
|--------------------------|-----------|------------|-----------|-----------|-----------|
| Baboon                   | 0.396385  | 52.149629  | 0.999979  | 0.999898  | 0.999899  |
| Boat                     | 0.400246  | 52.107537  | 0.999979  | 0.999911  | 0.999912  |
| Clock                    | 0.455513  | 51.545796  | 0.999988  | 0.999932  | 0.999932  |
| Couple                   | 0.402924  | 52.078577  | 0.999975  | 0.999848  | 0.999852  |
| Elaine                   | 0.402523  | 52.082896  | 0.999981  | 0.999908  | 0.999910  |
| Jet                      | 0.474091  | 51.372190  | 0.999985  | 0.999532  | 0.999559  |
| Map                      | 0.404316  | 52.063595  | 0.999988  | 0.999875  | 0.999877  |
| Space                    | 0.409069  | 52.012837  | 0.999976  | 0.999734  | 0.999744  |
| Tank                     | 0.414387  | 51.956745  | 0.999977  | 0.999728  | 0.999739  |
| Truck                    | 0.416115  | 51.938672  | 0.999966  | 0.999727  | 0.999737  |
| Average                  | 0.4175569 | 51.9308474 | 0.9999794 | 0.9998093 | 0.9998161 |

**Table 5.** Statistical analysis on embedding 151 x 152 dimension secret image in horizontal subband/'Real part of HF' band from four minimum bands, Payload 0.7 bpB.

| Cover Image<br>512 x 512 | MSE       | PSNR( <i>dB</i> ) | IF        | UQI       | SSIM      |
|--------------------------|-----------|-------------------|-----------|-----------|-----------|
| Baboon                   | 1.378391  | 46.737078         | 0.999926  | 0.999634  | 0.999640  |
| Boat                     | 1.448845  | 46.520585         | 0.999924  | 0.999670  | 0.999675  |
| Clock                    | 2.138859  | 44.828982         | 0.999943  | 0.999670  | 0.999673  |
| Couple                   | 1.532902  | 46.275660         | 0.999906  | 0.999408  | 0.999421  |
| Elaine                   | 1.455166  | 46.501679         | 0.999930  | 0.999660  | 0.999665  |
| Jet                      | 1.721626  | 45.771415         | 0.999945  | 0.998259  | 0.998357  |
| Map                      | 1.497513  | 46.377098         | 0.999956  | 0.999523  | 0.999532  |
| Space                    | 1.620136  | 46.035288         | 0.999905  | 0.998916  | 0.998957  |
| Tank                     | 1.457527  | 46.494637         | 0.999920  | 0.999016  | 0.999053  |
| Truck                    | 1.473133  | 46.448384         | 0.999879  | 0.999006  | 0.999044  |
| Average                  | 1.5724098 | 46.1990806        | 0.9999234 | 0.9992762 | 0.9993017 |

**Table 6.** Statistical analysis on embedding 151 x 152 dimension secret image in diagonalsubband/'Imaginary part of HF' band from four minimum bands, Payload 0.7 bpB.

| Cover Image<br>512 x 512 | MSE      | PSNR      | IF       | UQI      | SSIM     |
|--------------------------|----------|-----------|----------|----------|----------|
| Baboon                   | 1.382816 | 46.723159 | 0.999926 | 0.999633 | 0.999639 |
| Boat                     | 1.438732 | 46.551004 | 0.999924 | 0.999673 | 0.999677 |
| Clock                    | 2.067417 | 44.976522 | 0.999945 | 0.999681 | 0.999684 |
| Couple                   | 1.538448 | 46.259974 | 0.999905 | 0.999406 | 0.999419 |
| Elaine                   | 1.449154 | 46.519659 | 0.999930 | 0.999661 | 0.999666 |
| Jet                      | 1.713501 | 45.791960 | 0.999945 | 0.998267 | 0.998365 |
| Map                      | 1.490669 | 46.396991 | 0.999956 | 0.999526 | 0.999534 |
| Space                    | 1.526279 | 46.294463 | 0.999911 | 0.998979 | 0.999018 |
| Tank                     | 1.460400 | 46.486086 | 0.999920 | 0.999014 | 0.999052 |
| Truck                    | 1.480503 | 46.426710 | 0.999879 | 0.999001 | 0.999039 |

Average 1.5547919 46.2426528 0.9999241 0.9992841 0.9993093

**Table 7.** Statistical analysis on embedding 181 x 181 dimension secret image in horizontal subband/'Real part of HF' band from four minimum bands, Payload 1.0bpB.

| Cover Image<br>512 x 512 | MSE       | PSNR       | IF        | UQI       | SSIM      |
|--------------------------|-----------|------------|-----------|-----------|-----------|
| Baboon                   | 6.068684  | 40.299859  | 0.999673  | 0.998384  | 0.998409  |
| Boat                     | 6.856552  | 39.769746  | 0.999639  | 0.998433  | 0.998454  |
| Clock                    | 10.708042 | 37.833703  | 0.999717  | 0.998343  | 0.998358  |
| Couple                   | 7.724094  | 39.252328  | 0.999525  | 0.997007  | 0.997073  |
| Elaine                   | 6.661247  | 39.895248  | 0.999678  | 0.998437  | 0.998458  |
| Jet                      | 9.097958  | 38.541365  | 0.999709  | 0.990827  | 0.991339  |
| Map                      | 7.105892  | 39.614617  | 0.999792  | 0.997730  | 0.997772  |
| Space                    | 8.718529  | 38.726372  | 0.999489  | 0.994164  | 0.994385  |
| Tank                     | 6.680252  | 39.882875  | 0.999634  | 0.995477  | 0.995649  |
| Truck                    | 6.877502  | 39.756496  | 0.999436  | 0.995347  | 0.995524  |
| Average                  | 7.6498752 | 39.3572609 | 0.9996292 | 0.9964149 | 0.9965421 |

**Table 8.** Statistical analysis on embedding 181 x 181 dimension secret image in horizontal subband/'Imaginary part of HF' band from four minimum bands, Payload 1.0bpB.

| Cover Image<br>512 x 512 | MSE       | PSNR      | IF        | UQI      | SSIM     |
|--------------------------|-----------|-----------|-----------|----------|----------|
| Baboon                   | 6.099918  | 40.277563 | 0.999672  | 0.998376 | 0.998401 |
| Boat                     | 6.778450  | 39.819500 | 0.999643  | 0.998451 | 0.998471 |
| Clock                    | 10.442543 | 37.942741 | 0.999724  | 0.998384 | 0.998398 |
| Couple                   | 7.720406  | 39.254402 | 0.999526  | 0.997008 | 0.997075 |
| Elaine                   | 6.601910  | 39.934108 | 0.999681  | 0.998450 | 0.998471 |
| Jet                      | 9.111351  | 38.534976 | 0.999708  | 0.990814 | 0.991326 |
| Map                      | 7.102764  | 39.616530 | 0.999792  | 0.997732 | 0.997773 |
| Space                    | 8.015533  | 39.091479 | 0.999530  | 0.994632 | 0.994835 |
| Tank                     | 6.672466  | 39.887940 | 0.999635  | 0.995482 | 0.995654 |
| Truck                    | 6.873344  | 39.759123 | 0.999437  | 0.995350 | 0.995527 |
| Average                  | 7.5418685 | 39.411836 | 0.9996348 | 0.996468 | 0.996593 |

 Table 9. Summarization of analysis based on different bands used for embedding with various Payload.

| Calcula-<br>tion | Real part of<br>VF<br>(0.5bpB) | Real part of<br>HF<br>(0.5bpB) | Imaginary<br>part of HF<br>(0.5bpB) | Real part of<br>HF<br>(0.7bpB) | Imaginary<br>Part of HF<br>(0.7 bpB) | Real part of<br>HF<br>(1.0bpB) | Imaginary<br>part of HF<br>(1.0bpB) |
|------------------|--------------------------------|--------------------------------|-------------------------------------|--------------------------------|--------------------------------------|--------------------------------|-------------------------------------|
| MSE              | 0.7312988                      | 0.4274753                      | 0.4175569                           | 1.5724098                      | 1.5547919                            | 7.6498752                      | 7.5418685                           |
| PSNR             | 50.692459                      | 51.832843                      | 51.930847                           | 46.199081                      | 46.242653                            | 39.357261                      | 39.411836                           |
| IF               | 0.9999627                      | 0.999979                       | 0.9999794                           | 0.9999234                      | 0.9999241                            | 0.9996292                      | 0.9996348                           |
| UQI              | 0.9997855                      | 0.9997749                      | 0.9998093                           | 0.9992762                      | 0.9992841                            | 0.9964149                      | 0.9964679                           |
| SSIM             | 0.9997915                      | 0.999784                       | 0.9998161                           | 0.9993017                      | 0.9993093                            | 0.9965421                      | 0.9965931                           |

# 3. G- LETS BASED STEGANOGRAPHY

3.1 G-Let based Authentication/Secret Message Transmission (GASMT)

In this work a G-Let based steganographic technique, termed as GASMT has been proposed for authentication of gray scale images. The cover image transformed into one to many G-Lets based on

the technique of group theory. Out of all n number of G-Lets are embedded with secret message/image for authentication. Using a secret key and a hash function watermarks/secret are embedded into few G-Let components of the cover image along with adjustment/tuning of embedded transformed G-Lets components to minimize the noise integration. Embedded G-Lets are used at the destination for authentication. Experimental results are computed and compared with the existing authentication techniques like Li's method, SCDFT, Region-Based method based on Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Image Fidelity (IF), Universal Quality Image (UQI) and Structural Similarity Index Measurement (SSIM) which shows better performance in GASMT, in terms of computational complexity with better fidelity.

The pictorial representation of forward G-let transformation over an image is shown in figure 3.



**Fig 3 :** Original image with six G-lets after forward transformation

Ten PGM images have been taken and GASMT is applied to obtain results. All cover images are 512 x 512 in dimension. Average of MSE for ten images is 2.6180343, PSNR is 43.951741, image fidelity is 0.999869 and that of UQI is 0.998798. All computational results for individual image are given in table 10.

| Cover Image | MSE       | PSNR      | IF       | UQI      |
|-------------|-----------|-----------|----------|----------|
| Baboon      | 2.617661  | 43.951670 | 0.999859 | 0.999305 |
| Boat        | 2.618687  | 43.949968 | 0.999862 | 0.999404 |
| Clock       | 2.673706  | 43.859667 | 0.999929 | 0.999588 |
| Couple      | 2.637619  | 43.918683 | 0.999838 | 0.998981 |
| Elaine      | 2.620529  | 43.946914 | 0.999873 | 0.999387 |
| Jet         | 2.488403  | 44.171596 | 0.999920 | 0.997470 |
| Map         | 2.628601  | 43.933557 | 0.999923 | 0.999161 |
| Space       | 2.623821  | 43.941461 | 0.999846 | 0.998246 |
| Tank        | 2.625320  | 43.938980 | 0.999856 | 0.998224 |
| Truck       | 2.645996  | 43.904912 | 0.999782 | 0.998214 |
| Average     | 2.6180343 | 43.951741 | 0.999869 | 0.998798 |

Table 10. Statistical Data On Applying GASMT Over 10 Images for G-Let D<sub>3</sub>

# 3.2 Authentication through Hough transformation generated Signature on G-Let D3 Domain (AHSG)

In this work a G-Let based authentication technique has been proposed to authenticate digital documents through Hough transform generated signature generated from original autograph. The cover image is transformed into G-Let domain to generate n number of G-Lets out of which (n/2)-1

numbers of G-Lets are embedded with secret Hough signature bits for the purpose of authentication or copyright protection. The special feature of AHSG is to optimize the distortion rate, by adjustment at the last stage of the technique, using back propagation. Experimental results are computed and compared with the existing authentication techniques like Li's method, SCDFT, Region-Based method based on Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Image Fidelity (IF), Universal Quality Image (UQI) and Structural Similarity Index Measurement (SSIM) which shows better performance in AHSG, in terms of low computational complexity and better fidelity.

| Cover   | MSE      | PSNR      | IF       | UQI      | SSIM     |
|---------|----------|-----------|----------|----------|----------|
| Image   | WISE     |           |          |          |          |
| Baboon  | 1.006393 | 48.103126 | 0.999946 | 0.999730 | 0.999735 |
| Boat    | 0.996788 | 48.144775 | 0.999947 | 0.999771 | 0.999774 |
| Clock   | 0.998596 | 48.136905 | 0.999974 | 0.999845 | 0.999846 |
| Couple  | 1.007477 | 48.098453 | 0.999938 | 0.999608 | 0.999616 |
| Elaine  | 1.000916 | 48.126829 | 0.999952 | 0.999764 | 0.999767 |
| Jet     | 1.020554 | 48.042445 | 0.999967 | 0.998956 | 0.999015 |
| Map     | 1.002548 | 48.119751 | 0.999971 | 0.999677 | 0.999683 |
| Space   | 0.997475 | 48.141785 | 0.999941 | 0.999327 | 0.999352 |
| Tank    | 0.996841 | 48.144543 | 0.999945 | 0.999319 | 0.999346 |
| Truck   | 0.997772 | 48.140490 | 0.999918 | 0.999319 | 0.999346 |
| Average | 1.002536 | 48.11991  | 0.99995  | 0.999532 | 0.999548 |

Table 11: Statistical analysis on embedding 128 x 128 dimensions secret butterfly signature

Attacks are the malevolent action over an image during transmission through unsecured network without prior information to the owner or concern authority. Attack is a major concern in the field of steganography. The attacks in discussion are shown in figure 4. In the first attack few windows are copied from neighbor position. Second attack is the missing of information from an image with same image tone. Third attack is on the color intensity of an object present in an image without modifying object directly. Fourth one is the common attack known as crop attack and the fifth attack is a white mesh over an image. The statistical calculation of embedded image (A) with its corresponding attacked image (B) are also shown with the extracted secret from (A) before attack and (B) after attack. The fourth and fifth attack degrade the image with MSE 4181.3 and 7247.9 respectively, after applying the authentication algorithm of proposed AHSG technique the extracted secret image can be compared with the original secret image through human perception.

| First Attack                                          | Second attack                                         | Third attack                                                                         | Fourth attack                                                                                                                      | Fifth attack                                                                                                                                                                  |
|-------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                       | ħ                                                     |                                                                                      |                                                                                                                                    |                                                                                                                                                                               |
|                                                       |                                                       |                                                                                      |                                                                                                                                    |                                                                                                                                                                               |
| MSE = 145.019886<br>PSNR = 26.516528<br>IF = 0.995743 | MSE = 287.672115<br>PSNR = 23.541826<br>IF = 0.976329 | MSE = 605.998703<br>PSNR = 20.306087<br>IF = 0.970650                                | MSE = 4181.30521<br>PSNR = 11.917685<br>IF = 0.779188                                                                              | MSE = 7247.904099<br>PSNR = 9.528679<br>IF = 0.609960                                                                                                                         |
|                                                       | MSE = 145.019886<br>PSNR = 26.516528<br>IF = 0.995743 | MSE = 145.019886       MSE = 287.672115         PSNR = 26.516528       IF = 0.995743 | MSE = 145.019886       MSE = 287.672115       MSE = 605.998703         PSNR = 26.516528       IF = 0.976329       MSE = 605.998703 | MSE = 145.019886       MSE = 287.672115       MSE = 605.998703       MSE = 4181.30521         PSNR = 26.516528       IF = 0.976329       MSE = 605.998703       IF = 0.970650 |



Fig. 4. Few example of attack and robust nature of the AHSG

List of Publications for the year 2013

- [1] Madhumita Sengupta and J. K. Mandal, "Image coding through Z-Transform with low Energy and Bandwidth (IZEB)", The Third International Conference on Computer Science and Information Technology (CCSIT- 2013), Bangalore, India, ISSN: 1867-8211, 18-20, Feb (2013), Paper ID 182.
- [2] Madhumita Sengupta, J. K. Mandal, "Image Authentication through Z-Transform With Low Energy And Bandwidth (IAZT)", International Journal of Network Security & Its Applications (IJNSA) of AIRCC, Vol.5, No.5, pp – 43-62, DOI : 10.5121/ijnsa.2013.5504, September (2013), AIRCC Journal, Indexed by Inspec, Google Scholar, EBSCO, CSEB, Scribd, getCITED, DOAJ, pubget, CiteSeerx, .docstoc, pubZone, Ulrichs Web, WorldCat, ProQuest.
- [3] Madhumita Sengupta and J. K. Mandal, "G-Let based Authentication/Secret Message Transmission (GASMT)", 4th International Symposium on Electronic System Design ISED- 2013, NTU Singapure. (Accepted)
- [4] Madhumita Sengupta and J. K. Mandal, "Authentication through Hough transformation generated Signature on G-Let D3 Domain (AHSGD)", 1st International Conference on Computational Intelligence: Modeling, Techniques and Applications (CIMTA- 2013), Sponsored by AICTE, Govt. of India, Technically Sponsored by IEEE Kolkata chapter & Proceedings will be published with Procedia Technology, Elsevier, Vol. 10 (2013), ISSN 2212-0173, www.sciencedirect.com, pp – 121-130, 27th -28th September, 2013.
- [5] Madhumita Sengupta, J. K. Mandal, "Hough Signature based Authentication of image through Daubechies Transform technique (HSADT)", Computer Society of India Journal of Computing, Vol. 2, No. 1, pp- 83-89, 2013.
- [6] Madhumita Sengupta, P. Mandal, Tanmoy Das and Abhijit Dey, "A Novel Hash based Technique for Thermal Image Authentication", 1st International conference on Computational Intelligence: Modeling, Techniques and Applications (CIMTA- 2013), Sponsored by AICTE, Govt. of India, Technically Sponsored by IEEE Kolkata chapter & Proceedings will be published with Procedia Technology, Elsevier, Vol. 10 (2013), ISSN 2212-0173, www.sciencedirect.com, pp – 147-156, 27th -28th September, 2013.

- [7] Madhumita Sengupta and J. K. Mandal, "Color Image Authentication through Visible Patterns (CAV)", p. 617-625, ICT and Critical Infrastructure: Proceedings of the 48th Annual Convention of CSI Volume II, Springer International Publishing Switzerland 2014, Advances in Intelligent Systems and Computing (AISC-249), Hosted by CSI Vishakapatnam Chapter, 13th -15th Dec, 2013, DOI: 10.1007/978-3-319-03095-1\_67.
- [8] Madhumita Sengupta, J. K. Mandal, "Steganography on Thermal Images in Wavelet Domain (STWD)", IETE Zonal Seminar on "ICT in present Wireless Revolution: Challenges and Issues (ICTWR-2013)" Organized By The Institution of Electronics and Telecommunication Engineers, Kolkata Centre, In Association With Techno Group, Salt Lake, Venue : IETE Kolkata Centre, Salt Lake; Date: 30th – 31st August, 2013.